Геофизические процессы и биосфера: статья

ОРИЕНТАЦИОННОЕ ПОВЕДЕНИЕ ЖИВОТНЫХ В ГЕОМАГНИТНОМ ПОЛЕ И МЕХАНИЗМЫ МАГНИТОРЕЦЕПЦИИ
В.В. КРЫЛОВ
Е.А. ОСИПОВА
Ю.Г. ИЗЮМОВ
Институт биологии внутренних вод им И.Д. Папанина РАН
Журнал: Геофизические процессы и биосфера
Том: 13
Номер: 4
Год: 2014
Страницы: 60-81
Ключевые слова: магниторецепция, ориентационное поведение, ампулированные электрорецепторы, магнетит, бирадикальные реакции, криптохром
Аннотация: ОРИЕНТАЦИОННОЕ ПОВЕДЕНИЕ ЖИВОТНЫХ В ГЕОМАГНИТНОМ ПОЛЕ И МЕХАНИЗМЫ МАГНИТОРЕЦЕПЦИИ
Список литературы: Бучаченко А.Л., Сагдеев Р.З., Салихов К.М. Магнитные и спиновые эффекты в химических реакциях. Новосибирск: Наука, 1978. 294 с.

Зельдович Я.Б., Бучаченко А.Л., Франкевич Е.Л. Магнитно-спиновые эффекты в химии и молекулярной физике // Успехи физ. наук. 1988. Т. 155, № 1. С. 3-45.

Кишкинёв Д.А., Чернецов Н.С. Магниторецепторные системы у птиц: обзор современных исследований // Журн. общ. биол. 2014. Т. 75, № 2. С. 104-123.

Салихов К.М. 10 лекций по спиновой химии. Казань: Унипресс, 2000. 152 с.

Able K.P. Field studies of avian nocturnal migratory orientation. I. Interaction of sun, wind and stars as directional cues // Anim. Behav. 1982. V. 30. P. 761-767.

Albert J.S., Crampton W.G.R. Electroreception and electrogenesis // The physiology of fishes. Boca Raton: CRC Press, 2006. P. 429-470.

Alves-Gomes J.A. The evolution of electroreception and bioelectrogenesis in teleost fish: a phylogenetic perspective // J. Fish. Biol. 2001. V. 58, N 6. P. 1489-1511.

Andrianov G.N., Brown H.R., Ilyinsky O.B. Responses of central neurons to electrical and magnetic stimuli of the ampullae of Lorenzini in the Black Sea skate // J. Comp. Physiol. A. 1974. V. 93, N 4. P. 287-299.

Beason R., Semm P. Does the avian ophthalmic nerve carry magnetic navigational information? // J. Exp. Biol. 1996. V. 199. P. 1241-1244.

Beason R.C., Brennan W.J. Natural and induced magnetization in the bobolink (Dolichonyx oryzivorus) // J. Exp. Biol. 1986. V. 125. P. 49-56.

Beason R.C., Nichols J.E. Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird // Nature. 1984. V. 309. P. 151-153.

Begall S., Cerveny J., Neef J. et al. Magnetic alignment in grazing and resting cattle and deer // Proc. Natl. Acad. Sci. USA. 2008. V. 105. P. 13451-13455.

Biskup T., Paulus B., Okafuji A. et al. Variable electron transfer pathways in an amphibian cryptochrome: tryptophan versus tyrosine-based radical pairs // J. Biol. Chem. 2013. V. 288. P. 9249-9260.

Biskup T., Schleicher E., Okafuji A. et al. Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor // Angew. Chem. Int. Ed. 2009. V. 48. P. 404-447.

Boles L.C., Lohmann K.J. True navigation and magnetic map in spiny lobsters // Nature. 2003. V. 421. P. 60-63.

Brautigam C.A., Smith B.S., Ma Z. et al. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana // Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 12142-12147.

Brown H.R., Ilyinsky O.B. The ampullae of Lorenzini in the magnetic field // J. Comp. Physiol. A. 1978. V. 126, N 4. P. 333-341.

Burch J.B., Reif J.S., Yost M.G. Geomagnetic activity and human melatonin metabolite excretion // Neurosci. Lett. 2008. V. 438. P. 76-79.

Burda H., Marhold S., Westenberger T. et al. Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae) // Experientia. 1990. V. 46. P. 528-530.

Cashmore A., Jarillo J., Wu Y-J., Liu D. Cryptochromes: blue light receptors for plants and animals // Science. 1999. V. 284. P. 760-765.

Close J. Are stress responses to geomagnetic storms mediated by the cryptochrome compass system? // Proc. Roy. Soc. B. 2012. V. 279. P. 2081-2090.

Falkenberg G., Fleissner G., Schuchardt K. et al. Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds // PLOS ONE. 2010. V. 5, N 2. e9231.

Fisher J.H., Munro U., Phillips J.B. Magnetic navigation by an avian migrant? // Avian migration. Berlin: Springer, 2003. P. 423-432.

Fleissner G., Holtkamp-Rotzler E., Hanzlik M. et al. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons // J. Comp. Neurol. 2003. V. 458. P. 350-360.

Fleissner G., Stahl B., Thalau P. et al. A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons // Naturwissenschaften. 2007. V. 94, N 8. P. 631-642.

Foley L.E., Gegear R.J., Reppert S.M. Human cryptochrome exhibits light-dependent magnetosensitivity // Nat. Commun. 2011. V. 2. e356.

Fransson T., Jakobsson S., Johansson P. et al. Magnetic cues trigger extensive refuelling // Nature. 2001. V. 414. P. 35-36.

Freire R., Dunston E., Fowler E.M. et al. Conditioned response to a magnetic anomaly in the Pekin duck (Anas platyrhynchos domestica) involves the trigeminal nerve // J. Exp. Biol. 2012. V. 215, N 14. P. 2399-2404.

Gegear R.J., Casselman A., Waddell S., Reppert S.M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila // Nature. 2008. V. 454. P. 1014-1018.

Gegear R.J., Foley L.E., Casselman A., Reppert S.M. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism // Nature. 2010. V. 463. P. 804-807.

Gould J.L. The case for magnetic sensitivity in birds and bees (such as it is) // Amer. Sci. 1980. V. 68. P. 256-267.

Gundmundsson G.A., Sandberg R. Sanderlings (Calidris alba) have a magnetic compass: orientation experiments during spring migration in Iceland // J. Exp. Biol. 2000. V. 203. P. 3137-3144.

Hall S.H. Contour maps of the geomagnetic diurnal variation // J. Atmos. Sol. Terr. Phys. 1966. V. 28. P. 165-173.

Harada Y. Experimental analysis of behavior of homing pigeons as a result of functional disorders of their lagena // Acta Otolaryngol. 2002. V. 122. P. 132-137.

Harada Y., Taniguchi M., Namatame H., Iida A. Magnetic materials in otoliths of bird and fish lagena and their function // Acta Otolaryngol. 2001. V. 121. P. 590-595.

Henshaw I., Fransson T., Jakobsson S. et al. Information from the geomagnetic field triggers a reduced adrenocortical response in a migratory bird // J. Exp. Biol. 2009. V. 212. P. 2902-2907.

Henshaw I., Fransson T., Jakobsson S., Kullberg C. Geomagnetic field affects spring migratory direction in a long distance migrant // Behav. Ecol. Sociobiol. 2010. V. 64, N 8. P. 1317-1323.

Heyers D., Manns M., Luksch H. et al. A visual pathway links brain structures active during magnetic compass orientation in migratory birds // PLoS One. 2007. V. 2. e937.

Heyers D., Zapka M., Hoffmeister M. et al. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird // Proc. Natl. Acad. Sci. USA. 2010. V. 107, N 20. P. 9394-9399.

Hofmann M.H. Physiology of ampullary electrosensory systems // Encyclopedia of fish physiology from genome to environment. San Diego: Acad. Press, 2011. P. 359-365.

Holland R.A., Kirschvink J.L., Doak T.G., Wikelski M. Bats use magnetite to detect the Earth's magnetic field // PLoS One. 2008. V. 3. e1676.

Horst van der G.T., Muijtjens M., Kobayashi K. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms // Nature. 1999. V. 398. P. 627-630.

Jacklyn P.M., Munro U. Evidence for the use of magnetic cues in mound construction by the termite Amitermes meridionalis (Isoptera, Termitinae) // Austr. J. Zool. 2002. V. 50. P. 357-368.

Kalmijn A.J. The detection of electric fields from inanimate and animate sources other than electric organs // Handbook of Sensory Physiol. 1974. V. 3. P. 147-200.

Kalmijn A.J. Theory of electromagnetic orientation: a further analysis // Comparative physiology of sensory systems. Cambridge: Cambridge Univ. Press, 1984. P. 525-560.

Kavokin K.V. The puzzle of magnetic resonance effect on the magnetic compass of migratory birds // Bioelectromagnetics. 2009. V. 30. P. 402-410.

Keary N., Bischof H.J. Activation changes in zebra finch (Taeniopygia guttata) brain areas evoked by alterations of the Earth magnetic field // PLoS One. 2012. V. 7. e38697.

Keary N., Ruploh T., Voss J. et al. Oscillating magnetic field disrupts magnetic orientation in zebra finches, Taeniopygia guttata // Front. Zool. 2009. V. 6. e25.

Keeton W.T., Larkin T.S., Windsor D.M. Normal fluctuations in the Earth's magnetic field influence pigeon orientation // J. Comp. Physiol. 1974. V. 95. P. 95-103.

Kirschvink J.L. Magnetite biomineralization and geomagnetic sensitivity in animals: an update and recommendations for future study // Bioelectromagnetics. 1989. V. 10. P. 239-259.

Kirschvink J.L., Gould J.L. Biogenic magnetite as a basis for magnetic field detection in animals // Biosystems. 1981. V. 13. P. 181-201.

Kirschvink J.L., Walker M.M., Chang S.B. et al. Chains of single-domain magnetite particles in chinook salmon, Oncorhynchus tshawytscha // J. Comp. Physiol. A. 1985. V. 157. P. 375-381.

Kirschvink J.L., Walker M.M., Diebel C.E. Magnetite-based magnetoreception // Curr. Opin. Neurobiol. 2001. V. 11. P. 462-467.

Kishkinev D., Chernetsov N., Heyers D., Mouritsen H. Migratory reed warblers need intact trigeminal nerves to correct for a 1000 km eastward displacement // PLoS One. 2013. V. 8, N 6. e65847.

Klimley A.P. Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field // Marine Biol. 1993. V. 117. P. 1-22.

Kowalski U., Wiltschko R., Fuller E. Normal fluctuations of the geomagnetic field may affect initial orientation of pigeons // J. Comp. Physiol. A. 1988. V. 163. P. 593-600.

Kramer G. Experiments in bird orientation and their interpretation // Ibis. 1957. V. 99. P. 196-227.

Kramer G. Long-distance orientation // Biology and comparative physiology of birds. London: Acad. Press, 1961. P. 341-371.

Krylov V.V., Zotov O.D., Klain B.I. et al. An experimental study of the biological effects of geomagnetic disturbances: the impact of a typical geomagnetic storm and its constituents on plants and animals // J. Atmos. Sol. Terr. Phys. 2014. V. 110/111. P. 28-36.

Kullberg C., Henshaw I., Jakobsson S. et al. Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect // Proc. Roy. Soc. B. 2007. V. 274. P. 2145-2151.

Kullberg C., Lind J., Fransson T. et al. Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia) // Proc. Roy. Soc. B. 2003. V. 270. P. 373-378.

Larkin T.S., Keeton W.T. Bar magnets mask the effect of normal magnetic disturbances on pigeon orientation // J. Comp. Physiol. 1976. V. 110. P. 227-231.

Lau J.C.S., Rodgers C.T., Hore P.J. Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes // J. Roy. Soc. Interface. 2012. V. 9. P. 3329-3337.

Lauwers M., Pichler P., Edelman N.B. et al. An iron-rich organelle in the cuticular plate of avian hair cells // Curr. Biol. 2013. V. 23, N 10. P. 924-929.

Liedvogel M., Maeda K., Henbest K. et al. Chemical magnetoreception: bird cryptochrome I a is excited by blue light and forms long-lived radical pairs // PLoS One. 2007. V. 2. e1106.

Light P., Salmon M., Lohmann K.J. Geomagnetic orientation of loggerhead sea turtles: evidence for an inclination compass // J. Exp. Biol. 1993. V. 182. P. 1-10.

Lohmann K.J. Magnetic remanence in the western Atlantic spiny lobster, Panulirus argus // J. Exp. Biol. 1984. V. 113. P. 29-41.

Lohmann K.J., Cain S.D., Dodge S.A., Lohmann C.M.F. Regional magnetic fields as navigational markers for sea turtles // Science. 2001. V. 294. P. 364-366.

Lohmann K.J., Lohmann C.M.F., Erhart L.M. et al. Geomagnetic map used in sea-turtle navigation // Nature. 2004. V. 428. P. 909-910.

Lohmann K.J., Pentcheff N.D., Nevitt G.A. et al. Magnetic orientation of spiny lobsters in the ocean: experiments with undersea coil systems // J. Exp. Biol. 1995. V. 198. P. 2041-2048.

Maeda K., Wedge C.J., Storey J.G. et al. Spin-selective recombination kinetics of a model chemical magnetoreceptor // Chem. Commun. 2011. V. 47. P. 6563-6565.

Maeda K., Henbest K.B., Cintolesi F. et al. Chemical compass model of avian magnetoreception // Nature. 2008. V. 453. P. 387-390.

Maeda K., Robinson A.J., Henbest K.B. et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 4774-4779.

Mann S., Sparks N.H., Walker M.M., Kirschvink J.L. Ultrastructure morphology and organization of biogenic magnetite from sockeye salmon, Onchorhynehus nerka: implications for magnetoreception // J. Exp. Biol. 1988. V. 140. P. 35-49.

Marhold S., Burda H., Wiltschko W. A magnetic polarity compass for direction finding in a subterranean mammal // Naturwissenschaften. 1997. V. 84. P. 421-423.

Middendorff von A. Die Isepiptesen Russlands // Mem. Acad. Sci. St. Petersb. VI Ser. 1859. V. 8. P. 1-143.

Moore B.R. Is the homing pigeon's map geomagnetic? // Nature. 1980. V. 285. P. 69-70.

Mora C.V., Davison M., Wild J.M., Walker M.M. Magnetoreception and its trigeminal mediation in the homing pigeon // Nature. 2004. V. 432. P. 508-511.

Mouritsen H., Feenders G., Liedvogel M. et al. Night-vision brain area in migratory songbirds // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 8339-8344.

Mouritsen H., Hore P.J. The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds // Curr. Opin. Neurobiol. 2012. V. 22, N 2. P. 343-352.

Muheim R., Backman J., Akesson S. Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light // J. Exp. Biol. 2002. V. 205. P. 3845-3856.

Muller P., Ahmad M. Light activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception // J. Biol. Chem. 2011. V. 286. P. 21033-21040.

Murray R.W. Electrical sensitivity of the ampullae of Lorenzini // Nature. 1960. V. 187. P. 957.

New J.G. The evolution of vertebrate electrosensory systems // Brain Behav. Evol. 1997. V. 50. P. 244-252.

Niessner C., Denzau S., Gross J.C. et al. Avian ultraviolet/violet cones identified as probable magnetoreceptors // PLoS One. 2011. V. 6. e20091.

Northcutt R.G. Brain organization in the cartilaginous fishes // Sensory biology of sharks, skates, and rays. Washington: Government Print. Office, 1978. P. 107-193.

Pardi L., Ugolini A., Faqi A.S. et al. Zonal recovering in equatorial sandhoppers: Interaction between magnetic and solar orientation // Behavioral adaptation to intertidal life. N.Y.; London: Plenum Press, 1988. P. 79-92.

Paulin M.G. Electroreception and the compass sense of sharks // J. Theor. Biol. 1995. V. 174. P. 325-339.

Phillips J.B. Two magnetoreception pathways in a migratory salamander // Science. 1986. V. 233. P. 765-767.

Phillips J.B., Borland S.C. Behavioral evidence for use of a light-dependent magnetoreception mechanism by a vertebrate // Nature. 1992. V. 359. P. 142-144.

Phillips J.B., Borland S.C. Use of a specialized magnetoreception system for homing by the eastern red-spotted newt Notophthalmus viridescens // J. Exp. Biol. 1994. V. 188. P. 275-291.

Phillips J.B., Deutschlander M. Magnetoreception in terrestrial vertebrates: Implications for possible mechanisms of EMF interaction with biological systems // The melatonin hypothesis: breast cancer and the use of electric power. Columbus: Battelle Press, 1997. P. 111-172.

Phillips J.B., Freake M.J., Fischer J.H., Borland S.C. Behavioral titration of magnetic map coordinates // J. Comp. Physiol. A. 2002. V. 188. P. 157-160.

Phillips J.B., Muheim R., Jorge P.E. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? // J. Exp. Biol. 2010. V. 213. P. 3247-3255.

Quinn T.P. Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry // J. Comp. Physiol. A. 1980. V. 137. P. 243-248.

Reiter R.J. Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin // J. Cell. Biochem. 1993. V. 51. P. 394-403.

Ritz T., Adem S., Schulten K. A model for photoreceptor-based magnetoreception in birds // Biophys. J. 2000. V. 78. P. 707-718.

Ritz T., Ahmad M., Mouritsen H. et al. Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing // J. Roy. Soc. Interface. 2010. V. 7. P. S135-S146.

Ritz T., Thalau P., Phillips J.B. et al. Resonance effects indicate a radical-pair mechanism for avian magnetic compass // Nature. 2004. V. 429. P. 177-180.

Ritz T., Wiltschko R., Hore P.J. et al. Magnetic compass of birds is based on a molecule with optimal directional sensitivity // Biophys. J. 2009. V. 96. P. 3451-3457.

Riveros A.J., Srygley R.B. Do leafcutter ants, Atta colombica, orient their path-integrated home vector with a magnetic compass? // Anim. Behav. 2008. V. 75. P. 1273-1281.

Rodda G.H. The orientation and navigation of juvenile alligators: evidence of magnetic sensitivity // J. Comp. Physiol. A. 1984. V. 154. P. 649-658.

Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors // Chem. Rev. 2003. V. 103. P. 2203-2237.

Schulten K., Bittl R. Probing the dynamics of a polymer with paramagnetic end groups by magnetic fields // J. Chem. Phys. 1986. V. 84. P. 5155-5161.

Solov'yov I.A., Schulten K. Magnetoreception through cryptochrome may involve superoxide // Biophys. J. 2009. V. 96. P. 4804-4813.

Solov'yov I.A., Chandler D.E., Schulten K. Magnetic field effects in Arabidopsis thaliana cryptochrome-1 // Biophys. J. 2007. V. 92. P. 2711-2726.

Srygley R.B., Dudley R., Oliveira E.G., Riveros A.J. Experimental evidence for a magnetic sense in neotropical migrating butterflies (Lepidoptera: Pieridae) // Anim. Behav. 2006. V. 71. P. 183-191.

Thalau P., Ritz T., Burda H. et al. The magnetic compass mechanisms of birds and rodents are based on different physical principles // J. Roy. Soc. Interface. 2006. V. 3. P. 583-587.

Thalau P., Ritz T., Stapput K. et al. Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field // Naturwissenschaften. 2005. V. 92. P. 86-90.

Timmel C.R., Hore P.J. Oscillating magnetic field effects on the yields of radical pair reactions // Chem. Phys. Lett. 1996. V. 257, N 3/4. P. 401-408.

Treiber C.D., Salzer M.C., Riegler J. et al. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons // Nature. 2012. V. 484. P. 367-370.

Tricas T.C. The neuroecology of the elasmobranch electrosensory world: why peripheral morphology shapes behavior // Environ. Biol. Fish. 2001. V. 60. P. 77-92.

shapes behavior // Environ. Biol. Fish. 2001. V. 60. P. 77-92. Vacha M., Drstkova D., Puzova T. Tenebrio beetles use magnetic inclination compass // Naturwissenschaften. 2008. V. 95. P. 761-765.

Vacha M., Puzova T., Kvicalova M. Radiofrequency magnetic fields disrupt magnetoreception in American cockroach // J. Exp. Biol. 2009. V. 212. P. 3473-3477.

Viguier C. Le sens de l'orientation et ses organes chez les animaux et chez l'homme // Rev. Philos. Fr. Etrang. 1882. V. 14. P. 1-36.

Wagner G. Natural geomagnetic anomalies and homing in pigeons // Comp. Biochem. Physiol. 1983. V. 76A. P. 691-700.

Walcott C. Anomalies in the Earth's magnetic field increase the scatter of pigeon's vanishing bearings // Animal migration, navigation and homing. Berlin: Springer, 1978. P. 143-151.

Walcott C. Magnetic orientation in homing pigeons // IEEE Trans. Magn. 1980. V. 16. P. 1008-1013.

Walcott C., Green R.P. Orientation of homing pigeons altered by a change in the direction of an applied magnetic field // Science. 1974. V. 184. P. 180-182.

Walker M.M. A model for encoding of magnetic field intensity by magnetite-based magnetoreceptor cells // J. Theor. Biol. 2008. V. 250. P. 85-91.

Walker M.M. Magnetic sense in fishes // Encyclopedia of fish physiology from genome to environment. San Diego: Acad. Press, 2011. P. 726-735.

Walker M.M., Diebel C.E., Haugh C.V. et al. Structure and function of the vertebrate magnetic sense // Nature. 1997. V. 390. P. 371-376.

Wallraff H.G. Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results // Biogeosciences. 2013. V. 10. P. 6929-6943.

Wiltschko W. Further analysis of the magnetic compass of migratory birds // Animal migration, navigation and homing. Berlin: Springer, 1978. P. 302-310.

Wiltschko W., Wiltschko R. Magnetic compass of European robins // Science. 1972. V. 176, N 4030. P. 62-64.

Wiltschko W., Wiltschko R. Disorientation of inexperienced young pigeons after transportation in total darkness // Nature. 1981. V. 291. P. 433-434.

Wiltschko W., Wiltschko R. The effect of yellow and blue light on magnetic compass orientation in European robins, Erithacus rubecula // J. Comp. Physiol. A. 1999. V. 184. P. 295-299.

Wiltschko W., Wiltschko R. Magnetic compass orientation in birds and its physiological basis // Naturwissenschaften. 2002. V. 89. P. 445-452.

Wiltschko W., Wiltschko R. Magnetic orientation and magnetoreception in birds and other animals // J. Comp. Physiol. A. 2005. V. 191. P. 675-693.

Wiltschko W., Gesson M., Wiltschko R. Magnetic compass orientation of European robins under 565 nm green light // Naturwissenschaften. 2001. V. 88. P. 387-390.

Wiltschko R., Ritz T., Stapput K. et al. Two different types of light-dependent responses to magnetic fields in birds // Curr. Biol. 2005. V. 15. P. 1518-1523.

Wiltschko R., Stapput K., Ritz T. et al. Magnetoreception in birds: different physical processes for two types of directional responses // HFSP J. 2007. V. 1. P. 41-48.

Winklhofer M., Holtkamp-Rotzler E., Hanzlik M. et al. Clusters of superparamagnetic magnetite particles in the upper beak skin of pigeons: evidence of a magnetoreceptor? // Eur. J. Mineral. 2001. V. 13. P. 659-669.

Wu L.Q., Dickman J.D. Magnetoreception in an avian brain in part mediated by inner ear lagena // Curr. Biol. 2011.V. 21, N 5. P. 418-423.

Wu L.Q., Dickman J.D. Neural correlates of a magnetic sense // Science. 2012. V. 336. P. 1054-1057.

Zapka M., Heyers D., Hein C.M. et al. Visual but not trigeminal mediation of magnetic compass information in a migratory bird // Nature. 2009. V. 461. P. 1274-1277.

Zhao Y., Huang Y.N., Shi L., Chen L. Analysis of magnetic elements in otoliths of the macula lagena in homing pigeons with inductively coupled plasma mass spectrometry // Neurosci. Bull. 2009. V. 25, N 3. P. 101-108.