Geophysical research: article

GEOPHYSICAL BACKGROUND OF THE NONLINEAR FOR-MATION MECHANISM OF LOW-FREQUENCY SEISMIC ANOMALY ABOVE HYDROCARBON DEPOSITS
I.Ya. Chebotareva
Oil and Gas Research Institute, Russian Academy of Sciences
Journal: Geophysical research
Tome: 25
Number: 1
Year: 2024
Pages: 86-102
UDK: 550.3; 504.5.06
DOI: 10.21455/gr2024.1-6
Full text
Keywords: low-frequency passive seismic, oil, gas, seismic emission, porous media, thermodynamic indicator, Klimontovich entropy.
Аnnotation: The paper considers issues related to a possible mechanism for generating a low-frequency seismic background anomaly over hydrocarbon deposits in the frequency range of 1–10 Hz. In this regard, the empirical linear dependence of the thermodynamic indicator of the state of the geoenvironment on the total thickness of productive intervals in the well near the recording point is discussed. This dependence was recently discovered in the analysis of the seismic background on the surface. The mentioned dependence provides the possibility of constructing productivity maps in hydrocarbon fields at the stage of exploration and development of fields, as well as selecting of the most promising points for drilling wells. An analysis of the known published data and the results of our studies on seismic emission tomography indicate the consistency of the hypothesis of a nonlinear mechanism of generation over hydrocarbon deposits of the low-frequency component of the seismic background at the difference frequency of harmonics with simi-lar frequencies, which was proposed by E.D. Rode [Rode, Nasr, Makhous, 2010]. In case the hypothesis of E.D. Rode is correct, the ratio of the observed geophysical parameters leads to the assumption that nonlinear acoustic effects in porous and fractured reservoir rocks with multicomponent saturation develop on slow longi-tudinal Biot waves of the second type P2.
Bibliography: Arutyunov S.L., Loshkarev G.L., Grafov B.M., Sirotinskii Yu.V., Novitskii M.A., Nemtarev V.I., Kuznetsov O.L., Shutov G.Ya., Rezunenko V.I., Chernenko A.M., RF Patent No. 2045079, 1995. [In Russian].

A promising method of searching for oil and gas deposits. Conversation with academician A.Y. Tsivadze, Vest-nik Rossijskoj akademii nauk (Bulletin of the Russian Academy of Sciences), 2014, vol. 84, no. 3, pp. 249-252. [In Russian].

Biot M.A., Theory of propagation of elastic waves in a fluid-saturated Porous Solid (I. Low frequency range, II. Higher frequency range), Journal of the Acoustical Society of America, 1956, vol. 28, no. 2, pp. 168-191.

Carter J.A., Barstow N., Pomeroy P.W., Chael E.P., Leany J., High-frequency seismic noise as a function of depth, Bulletin of the Seismological Society of America, 1991, vol. 81, no. 4, pp. 1101-1114.

Chebotareva I.Ya., Emission seismic tomography – the tool to study fracturing and fluidodynamics of the Earth crust, Georesources, 2018a, vol. 20, no. 3, pp. 238-245. DOI: https://doi.org/10.18599/grs.2018.3.238-245

Chebotareva I.Ya., Ray Tracing Methods in Seismic Emission Tomography, Izvestiya, Physics of the Solid Earth, 2018b, vol. 54, no. 2, pp. 201-213. DOI: 10.1134/S1069351318020040

Chebotareva I.Ya., Remote Evaluation of Hydrocarbon Reservoir Productivity under Big Noisiness, Journal of Mining Science, 2022, vol. 58, no. 3, pp. 366-375. DOI: 10.1134/S1062739122030036

Chebotareva I.Ya., Dmitrievskii A.N., Dissipative seismic, Fizicheskaja mezomehanika (Physical mesomecha-nics), 2020, vol. 23, no. 1, pp. 14-32. [In Russian].

Chebotareva I.Ya., Rode E.D., Dissipative Seismicity for Hydrocarbon Reservoir Parameter Evaluation, Izvesti-ya, Physics of the Solid Earth, 2023, vol. 59, no. 4, pp. 650-661. DOI: 10.1134/S1069351323040031

Chebotareva I.Ya., Rode E.D., Dmitrievskiy A.N., A Thermodynamic Indicator for Remote Assessment of the Productivity of a Hydrocarbon Reservoir, Doklady Earth Sciences, 2021, vol. 500, no. 2, pp. 857-860.

Chebotareva I.Ya., Volodin I.A., Criterion of the Order Degree for Self-Oscillating Regimes in the Analysis of Geophysical Medium Dynamics, Doklady Earth Sciences, 2010, vol. 432, no. 1, pp. 618-621.

Golitsyn B.B., Izbrannye trudy. T. 2. (Selected works. Vol. 2), Moscow, AN SSSR, 1960, pp. 411-413. [In

Russian].

Grafov B.M., Arutyunov S.L., Kazarinov V.E., Kuznetsov O.L., Sirotinskii Yu.V., Suntsov A.E., Analysis of geo-acoustic radiation from an oil and gas deposit using ANCHAR technology, Geofizika (Geophysics), 1998, no. 5, pp. 24-28. [In Russian].

Guliev I.S., Yusubov N.P., Guseynova S.M., On the formation mechanism of mud volcanoes in the South Cas-pian Basin according to 2D and 3D seismic data, Izvestiya, Physics of the Solid Earth, 2020, vol. 56, no. 5, pp. 721-727.

Holzner R., Eschle P., Zurcher H., Lambert M., Graf R., Dangel S., Meier P.F., Applying microtremor analysis to identify hydrocarbon reservoirs, First Break, 2005, vol. 23, no. 5, pp. 41-46.

Klimontovich Yu.L., Statisticheskaya teoriya otkrytykh system, T. 1 (Statistical theory of open systems, Vol. 1), 1995, Moscow, Yanus, 624 p. [In Russian].

Kudryavtsev N.A., Genezis nefti i gaza (Genesis of oil and gas), Leningrad, Nedra, 1973, 216 p. [In Russian].

Kukuruza V.D., Krivosheev A.V., Ivanova E.Z., Pekelnaya E.V., Geoelectric model of a hydrocarbon deposit, Geoinformatika (Geoinformatics), 2019, no. 4, pp. 50-55. [In Russian].

Kurlenya M.V., Serdyukov S.V., Nonlinear effects in the radiation and propagation of vibro-seismic signals in a rock mass, Journal of Mining Science, 1999, vol. 35, no. 2, pp. 105-112.

Lambert M., Schmalholz S.M., Saenger E.H., Steiner B., Low-frequency microtremor anomalies at an oil and gas field in Voitsdorf, Austria, Geophysical Prospecting, 2009, vol. 57, pp. 393-411.

Makhous M., Rode E.D., Kaya S., Application of the Infrasonic Passive Differential Spectroscopy (IPDS) for Hydrocarbon Direct Detection and Reservoir Monitoring in fields of the North-Caspian Basin: Achieve-ments



and Challenges, in Abstracts. SPE/EAGE Reservoir Characterization and Simulation Conf. Abu Dhabi, UAE, 19–21 October 2009, SPE, 2009, 14 p. DOI: 10.2118/125385-MS

Mikhailov D.N., The difference between longitudinal Frenkel–Bio waves in water-saturated and gas-saturated porous media, Fluid Dynamics, 2006, vol. 41, no. 1, pp. 112-120.

Napreev D.V., Olenchenko V.V., Pospeeva E.V., Antonov E.Yu., Geological informativeness of the complex of electrical exploration and geochemical methods in the search for oil in Western Siberia, Neft'. Gaz. No-vatsii (Oil. Gas. Innovations), 2016, no. 1. pp. 42-44. [In Russian].

Nikolaev S.A., Ovchinnikov M.N., Sound generation by filtration flow in porous media, Akusticheskii zhurnal (Acoustic magazine), 1992, vol. 38, no. 1, pp.114-118. [In Russian].

Nikolaevskii V.N., Geomekhanika i flyuidodinamika (Geomechanics and fluid dynamics), Moscow, Nedra, 1996, 448 p. [In Russian].

Nikolaevskii V.N., Basniev K.S., Gorbunov A.T., Zotov G.A., Mekhanika nasyshchennykh poristykh sred (Me-chanics of saturated porous media), Moscow, Nedra, 1970, 339 p. [In Russian].

Novikov B.K., Rudenko O.V., Timoshenko V.I., Nelineinaya gidroakustika (Nonlinear hydroacoustics), Lenin-grad, Sudostroenie, 1981, 264 p. [In Russian].

Pavlinova N.V., Shakhova A.Yu., The role of mud volcanism in the formation of oil and gas deposits of the Yu-zhno-Piltunsky section of the Piltun-Astokhskoye field on the shelf of Sakhalin Island, Vestnik RUDN. Serija: Inzhenernye issledovanija (Bulletin of the RUDN. Series: Engineering Research), 2016, no. 2, pp. 74-81. [In Russian].

Pirson S.J., Significant Advances in Magneto-electric Exploration, in Unconventional Methods in Exploration for Petroleum and Natural Gas. Proc. Symp. II-1979, Dallas, Texas, Southern Methodist University Press, 1981, pp. 169-196.

Potylitsyn V., Kudinov D., Kokhankova E., Shaydurov G., The results of observing the seismoelectric effect in a gas condensate hydrocarbon field using a source of seismic field, International Journal of GEOMATE, 2020, vol. 20, no. 77, pp. 33-39.

Rapoport M.B., Rapoport L.I., Ryzhkov V.I., Search and exploration of oil and gas deposits based on the effect of their seismic inelasticity, Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij (Geo-logy, geophysics and development of oil and gas fields), 2002, no. 5, pp. 55-59. [In Russian].

Rode E.D., Nasr H., Makhous М., Is the future of seismic passive?, First Break, 2010, vol. 28, no. 7, pp. 77-80.

Rudenko O.V., Soluyan S.I., Teoreticheskie osnovy nelineinoi akustiki (Theoretical Foundations of Nonlinear Acoustics), Moscow, Nauka, 1975, 289 p. [In Russian].

Saenger E.H., Schmalholz S.M., Lambert M., Nguyen T.T., Torres A., Metzger S., Habiger R.M., Müller T., Rentsch S., Méndez-Hernández E., A passive seismic survey over a gas field: Analysis of low-frequency anomalies, Geophysics, 2009, vol. 74, no. 2, pp. O29-O40.

Silin D., Goloshubin G., An asymptotic model of seismic reflection from a permeable layer, Transport in Porous Media, 2010, vol. 83, no. 1, pp. 233-256.

Valyaev B.M., Hydrocarbon degassing of the Earth, geotectonics and the origin of oil and gas, in Degazacija Zemli i genezis neftegazovyh mestorozhdenij. K 100-letiju so dnja rozhdenija P.N. Kropotkina (Degassing of the Earth and the genesis of oil and gas fields. To the 100th anniversary of the birth of P.N. Kropotkin), Moscow, GEOS, 2011, pp. 10-30. [In Russian].

Vinogradova M.B., Rudenko O.V., Sukhorukov A.P., Teorija voln (Wave theory), Moscow, Nauka, 1979, 384 p. [In Russian].

Westervelt Р.J., Parametric acoustic array, Journal of the Acoustical Society of America, 1963, vol. 35, no. 4, pp. 535-537.

Withers M.M., Aster R.C., Young C.J., Chael E.P., High-frequency analysis of seismic background noise as a function of wind speed and shallow depth, Bulletin of the Seismological Society of America, 1996, vol. 86, no. 5, pp. 1507-1515.