Geophysical research: article

FEATURES OF PROCESSING STRAPDOWN AIRBORNE GRAVIMETER MEASUREMENTS FOR GEOPHYSICAL APPLICATIONS
V.S. Vyazmin 1 A.A. Golovan 1 G.I. Brovkin 2
1 Lomonosov Moscow State University 2 GNPP Aerogeophysica, JSC
Journal: Geophysical research
Tome: 25
Number: 1
Year: 2024
Pages: 40-56
UDK: 531,550.831
DOI: 10.21455/gr2024.1-3
Full text
Keywords: airborne gravimetry, strapdown airborne gravimeter, gravity anomaly, post-processing.
Аnnotation: In recent years, strapdown airborne gravimeters based on navigation-grade strapdown inertial navigation sys-tems (SINS) have become more attractive for airborne gravimetry surveys. Such systems also include a thermal stabilizing system and global navigation satellite system receivers (onboard receiver and ground-based reference stations). The advantages of strapdown airborne gravimeters (comparing to traditional airborne gravimeters based on stabilized platforms) are low weight and compact size, which allows one to install them on light (in-cluding unmanned) aerial vehicles. Another important advantage is the possibility to apply these systems in difficult dynamic conditions, including surveys that envelope the terrain. Post-processing of strapdown airborne gravimeter primarily data has a number of significant features that distinguish it from the processing of data from traditional stabilized-platform airborne gravimeters. These features are mainly associated with increased requirements for the calibration accuracy of the inertial sensors (accelerometers and gyroscopes) of SINS airborne gravimeter and the need to maintain it at a certain level throughout the survey. This, in particular, leads to the complication of the mathematical model of instrumental errors in the vertical channel of the airborne gravimeter and the necessity to take this model into account at the stage of estimating route anomalies. This work is focused on the discussion of these features and proposes a data processing method tested by the authors on extensive experimental material. The numerical results of processing surveys carried out in vari-ous modes (at a constant altitude and with terrain enveloping) on aircraft of different series and on an un-manned aerial vehicle are presented. It is shown that the achieved accuracy of the resulting digital gravity field models is sufficient for the use in geophysical applications.
Bibliography: Afanas'eva L.V., Boyarsky E.A., Koneshov V.N., Stepanova I.E., Analytical continuation of the gravitational field up and down in the processing and analysis of aerogravimetric measurements, Giroskopija i navi-gacija (Gyroscopy and Navigation), 2006, no. 3(54), pp. 29-41. [In Russian].

Andreev V.D., Teorija inercial'noj navigacii. Avtonomnye sistemy (Theory of inertial navigation. Autonomous systems), Moscow, Nauka, 1966, 580 p. [In Russian].

Ayres-Sampaio D., Deurloo R., Bos M., Magalhaes A., Bastos L., A comparison between three IMUs for strapdown airborne gravimetry, Survey Geophysics, 2015, vol. 36, no. 4, pp. 571-586. https://doi.org/

10.1007/s10712-015-9323-5

Babayants P.S., Pavlov S.A., Trusov A.A., Metodicheskie rekomendacii po ajerogeofizicheskomu so-provozhdeniju prognoznyh i poiskovyh rabot na tverdye poleznye iskopaemye (Methodological recom-mendations on geophysical support of forecasting and prospecting for solid minerals), Moscow, ROSGEO, 2022, 59 p. [In Russian].

Becker D., Advanced calibration methods for strapdown airborne gravimetry, Ph.D. Thesis, Darmstadt: Techni-cal University of Darmstadt, Germany, 2016, 206 p.

Bolotin Y.V., Vyazmin V.S., Local multiscale estimation of the gravity anomaly from aerogravity data, Geofizi-cheskie issledovanija (Geophysical Research), 2014, vol. 15, no. 3, pp. 38-49. [In Russian].

Brovkin G.I., Bulychev A.A., Retrospective airborne gravity data processing stages, Geofizica (Geophysics), 2021, no. 2, pp. 74-81. [In Russian].

Brovkin G.I., Kontarovich O.R., Golovan A.A., Vyazmin V.S., Results of the first airborne gravimetric survey in Russia with a strapdown gravimeter, in Trudy IV Mezhdunarodnoj geologo-geofizicheskoj konferencii i vystavki “GeoEvrazija-2021. Georazvedka v sovremennyh realijah”. T. 2 (Proceedings of the IV Interna-tional Geological and Geophysical Conference and Exhibition “GeoEurasia-2021. Geological exploration in modern realities”. Vol. 2), Tver, LLC “PoliPRESS”, 2021, pp. 107-111. [In Russian].

Forsberg R., Olesen A.V., Airborne gravity field determination, in Sciences of Geodesy–I: Advances and Future Directions, Berlin, Springer, 2010, pp. 83-104.

Golovan A.A., Vyazmin V.S., Methodology of Airborne Gravimetry Surveying and Strapdown Gravimeter Data Processing, Gyroscopy and Navigation, 2023, vol. 14, no. 1, pp. 36-47.

Instrukciya po magnitorazvedke. Nazemnaya magnitnaya s"emka, ae'romagnitnaya s"emka, gidromagnitnaya s"emka (Instructions for magnetic exploration. Ground magnetic survey, aeromagnetic survey, hydro-magnetic survey), Leningrad, Nedra, 1981, 263 p. [In Russian].

Jensen T.E., Forsberg R., Helicopter test of a strapdownairborne gravimetrysystem, Sensors, 2018, vol. 18, no. 9, pp. 1-16. https://doi.org/10.3390/s18093121

Jordan T.A., Becker D., Investigating the distribution of magmatism at the onset of Gondwana breakup with novel strapdown gravity and aeromagnetic data, Phys. Earth Planet. Inter., 2018, vol. 282, pp. 77-88. https://doi.org/10.1016/j.pepi.2018.07.007

Kailath T., Sayed A.H., Hassibi B., Linear estimation. Englewood Cliffs, Prentice Hall, 2000, 854 p.

Koneshov V.N., Mikhailov P.S., Solovyev V.N., Zheleznyak L.K., Evaluation of the prospects and resolution of ultra-high-power models of the Earth's gravitational field, Geofizicheskie issledovanija (Geophysical Re-search), 2021, vol. 22, no. 1, pp. 40-53. [In Russian]. DOI: 10.21455/gr2021.1-3

Lu B., Barthelmes F., Petrovic S., Förste C., Flechtner F., Luo Z., He K., Li M., Airborne gravimetry of GEOHALO mission: data processing and gravity field modeling, Journal of Geophysical Research: Solid Earth, 2017, vol. 122, no. 12, pp. 586-604.

Methods and Technologies for Measuring the Earth’s Gravity Field Parameters, Cham, Switzerland, Springer, 2022, 388 p. https://doi.org/10.1007/978-3-031-11158-7

Mogilevsky V.E., Brovkin G.I., Smirnov A.S., Prozorova G.V., Estimation of the error of aerogravimetric survey data, Monitoring. Nauka i tehnologii (Monitoring. Science and technology), 2018, no. 3, pp. 6-17.

[In Russian].

Mogilevsky V., Kaplun D., Kontarovich O., Pavlov S., Airborne Gravity in Aerogeophysica Inc, in Proceedings of IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements, St. Petersburg, Concern Central Research Institute Electropribor, 2010, pp. 42-43.

Mogilevsky V.E., Kontarovich O.R., Airborne gravimetry is an innovative technology in geophysics, Razvedka i okhrana nedr (Exploration and protection of mineral resources), 2011, no. 7, pp. 7-10. [In Russian].

McCubbine J.C., Stagpoole V., Caratori Tontini F., Amos M., Smith E., Winefield R., Gravity anomaly grids for the New Zealand region, New Zealand Journal of Geology and Geophysics, 2017, vol. 60, no. 4, pp. 381-391. https://doi.org/10.1080/00288306.2017.1346692

Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K., The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research, 2012, vol. 117, pp. 1-38.

Peshekhonov V.G., Stepanov O.A., Rozentsvein V.G., Krasnov A.A., Sokolov A.V., State-of-the-art strapdown airborne gravimeters: Analysis of the development, Gyroscopy and Navigation, 2022, vol. 13, no. 4(119), pp. 189-209. https://doi.org/10.1134/S2075108722040101

Stepanov O.A., Osnovy teorii ocenivanija s prilozhenijami k zadacham obrabotki navigacionnoj informacii. Ch. 1. Vvedenie v teoriju ocenivanija (Fundamentals of the theory of estimation with applications to the problems of processing navigation information. Part 1. Introduction to the theory of estimation), St. Pe-tersburg, SSC RF “Electropribor”, 2009, 496 p. [In Russian]

Studinger M., Bell R., Frearson N., Comparison of AIRGrav and GT-1A airborne gravimeters for research appli-cations, Geophysics, 2008, vol. 73, pp. 151-161.

Torge W., Geodesy, Berlin, Boston, De Gruyter, 1991, 264 p.