Geophysical research: article

CHANGES IN POROSITY STRUCTURE COMPARED WITH VOLUMETRIC DEFORMATION DURING PREPARATION OF FRACTURING USING THE EXAMPLE OF SANDSTONE SAMPLES
V.S. Zhukov Y.O. Kuzmin
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Journal: Geophysical research
Tome: 24
Number: 4
Year: 2023
Pages: 5-27
UDK: 552.12: 620.17
DOI: 10.21455/gr2023.4-1
Full text
Keywords: porosity structure, compressive strength, nature of deformation, preparation of fracturing, reservoir conditions, fracture components of the porosity
Аnnotation: The paper deals with the results of experimental studies of changes in the porosity structure of sandstone samples in the process of preparing for fracturing under conditions simulating reservoir ones. The studied samples were divided according to the type of deformation (brittle, elastic-plastic and dilatancy) and fracture with an in-crease in additional axial compression. It has been established that changes in the total porosity and its inter-granular component in the process of increasing axial compression have a nature close to the nature of changes in volumetric deformation. The parameters of specific changes in fracture and intergranular porosity, which are genetically related to the relative volumetric deformations of fractures and intergranular pores, are introduced. Separate analysis of the fracture and intergranular porosity components made it possible to reveal that the de-formation processes occurring in the studied samples with increasing load and the transition from elastic to destructive deformations are accompanied both by rock compaction due to the decrease in the volume of frac-tures and intergranular pores and its increase just before the destruction of the samples. This is caused by newly formed microfractures, as the identified changes in intergranular porosity are minimal. Changes in the fracture porosity during the transition from elastic (linear) deformation to inelastic nature are characterized by alterning changes with a general tendency to increase its value. It has been revealed that the intergranular and fracture components of the porosity of samples react in different ways to changes in the stress state. It is shown that the fracture porosity of samples has a determining influence on the nature of deformation and preparation of destruction of sandstone samples. The obtained results can be used to optimize the development of hydrocarbon deposits and, in particular, for estimation of their negative deformation consequences.
Bibliography: Bayuk I.O., Ryzhkov V.I., Determination of the parameters of cracks and pores of carbonate reservoirs accord-ing to wave acoustic logging, Tehnologii sejsmorazvedki (Seismic exploration technologies), 2010, no. 3, pp. 32-42. [In Russian].

Belyakov N.A., Karasev M.A., Trushko V.L., Mehanika sploshnoj sredy (Continuum mechanics), St. Petersburg, LLC “Lema Publishing House”, 2019, 114 p. [In Russian].

Berezin A.V., Vlijanie povrezhdenij na deformacionnye i prochnostnye harakteristiki tverdyh tel (The effect of damage on the deformation and strength characteristics of solids), Moscow, Nauka, 1990, 135 p. [In Russian].

Berezin A.V., Fracture mechanics of multimodulus dilatant media, Journal of Applied Mechanics and Tech-nical Physics, 2014, vol. 55, no. 1, pp. 16-18.

Bieniawski Z.T., Mechanism of brittle fracture of rock: Part I – theory of the fracture process, International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1967а, vol. 4, no. 4, pp. 395-406. https://doi.org/10.1016/0148-9062(67)90030-7

Bieniawski Z.T., Mechanism of brittle fracture of rock: Part II – experimental studies, International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1967b, vol. 4, no. 4, pp. 407-423.

Bieniawski Z.T., Mechanism of brittle fracture of rock: Part III – fracture in tension and long-term loads, Inter-national Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1967c, vol. 4, no. 4, pp. 425-430.

Chernyshov S.E., Popov S.N., Varushkin S.V., Melekhin A.A., Krivoschekov S.N., Ren Shaoran, Scientific justi-fication of the perforation methods for Famennian deposits in the southeast of the Perm Region based on geomechanical modeling, Journal of Mining Institute, 2022, vol. 257, pp. 732-743.

Chernyshov S.E., Repina V.A., Krysin N.I., McDonald D.I.M., Improving efficiency of terrigenous oil-saturated reservoirs development by the system of oriented selective slotted channels, Journal of Mining Institute, 2020, vol. 246, pp. 660-666. DOI: 10.31897/PMI.2020.6.8

Ding Q.L., Song S.B., Experimental Investigation of the Relationship between the P-Wave Velocity and the Me-chanical Properties of Damaged Sandstone, Advances in Materials Science and Engineering, 2016, vol. 2016, 10 p. http://dx.doi.org/10.1155/2016/7654234

Dubinya N.V., Beloborodov D.E., Krasnova M.A., Leonova A.M., Tikhotsky S.A., Preliminary study of the op-portunity to predict changes in rock samples inner structure caused by triaxial loading based on stress-strain relationship, in Physical and Mathematical Modeling of Earth and Environment Processes, Cham, Springer, 2022, pp. 1-17. DOI: 10.1007/978-3-031-25962-3_1

El Azhari H., El Hassani I., Effect of the number and orientation of fractures on the P-wave velocity diminution: application on the building stones of the Rabat area (Morocco), Geomaterials, 2013, vol. 3, no. 3, pp. 71-81.

Garagash I.A., Dubinya N.V., Rusina O.A., Tikhotsky S.A., Fokin I.V., Determination of the strength properties of rocks according to triaxial tests, Geofizicheskie issledovanija (Geophysical Research), 2018, vol. 19, no. 3, pp. 57-72. [In Russian]. DOI: 10.21455/gr2018.3-4

Garagash I.A., Dubovskaya A.V., Bayuk I.O., Tikhotskiy S.A., Glubokovskikh S., Korneva D.A., Berezina I.A., 3D geomechanical modeling of oil field on the basis of a model of the mechanical properties for the task of wells construction, in Proceedings of the SPE Russian Oil & Gas Exploration and production, Mos-cow, SPE, 2015, 11 p.

Garagash I.A., Nikolaevski V.N., Dudley J.W., FLAC simulation of triaxial and compaction tests an unconsoli-dated reservoir sand, in FLAC and Numerical Modeling in Geomechanics, Netherlands, Balkema, 1999, рр. 505-510.

Garavand A., Rebetsky Y.L., Methods of geomechanics and tectonophysics in solving problems of stability of oil wells during drilling, Geofizicheskie issledovanija (Geophysical Research), 2018, vol. 19, no. 1, pp. 55-76. [In Russian]. DOI: 10.21455/gr2018.1-5

Gasemi M.F., Bayuk I.O., Bound for pore space parameters of petroelastic models of carbonate rocks, Izvestia, Physics of the Solid Earth, 2020, vol. 56, no. 2, pp. 207-224. DOI: 10.1134/S1069351320020032

Hon Y.A., Zuev L.B., Plastic flow as a process of formation of space-time structures. Part II. Origin and devel-opment of localized structures: a two-level macroscopic description, Fizicheskaja mezomehanika (Physi-cal mesomechanics), 2021, vol. 24, no. 6, pp. 15-24. [In Russian].

Inkov V.N., Cherepetskaya E.B., Shkuratnik V.L., Karabutov A.A., Makarov V.A., Ultrasonic laser spectroscopy of mechanic-acoustic nonlinearity of cracked rocks, Journal of Applied Mechanics and Technical Phys-ics, 2005, vol. 46, no. 3, pp. 452-457. DOI: 10.1007/s10808-005-0096-3

Kashnikov Y.A., Ashikhmin S.G., Gladyshev S.V., Popov S.N., Matyashov S.V., Changes in the stress-strain state and filtration-capacitance properties of a fractured productive object during slot perforation, Ge-ologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij (Geology, geophysics and develop-ment of oil and gas fields), 2002, no. 11, pp. 15-21. [In Russian].

Kolchugin A.N., Ziganshin E.R., Morozov V.P., Bystrov E.S., Korolev E.A., Gilfanov S.I., Geomechanical and lithological characteristics of the deposits of the Verey horizon of the middle carboniferous in connection with the prediction of the use of hydraulic fracturing technology, on the example of the Ivinsky deposit in the south-east of Tatarstan, Georesursy (Geo resources), 2022, vol. 24, no. 4, pp. 65-74. [In Russian]. DOI: 10.18599/grs.2022.4.5

Kornev V.M., Zinoviev A.A., Quasi-brittle rock failure model, Journal of Mining Science, 2013, vol. 49, no. 4, pp. 576-582. DOI: 10.1134/S1062739149040084

Kuzmin Yu.O., Modern anomalous geodynamics of the subsurface induced by small natural and man-made impacts, Gornyj informacionno-analiticheskij bjulleten' (Mining information and analytical bulletin), 2002, no. 9, pp. 48-54. [In Russian].

Kuzmin Yu.O., Recent geodynamics of a fault system, Izvestia, Physics of the Solid Earth, 2015, vol. 51, no. 4, pp. 480-485. DOI: 10.1134/S1069351315040059

Kuzmin Yu.O., Deformation consequences of oil and gas field development, Geofizicheskie processy i biosfera (Geophysical processes and the biosphere), 2021, vol. 20, no. 4, pp. 103-121. [In Russian].

Kuzmin Yu.O., Recent volumetric deformation of fault zones, Izvestiya, Physics of the Solid Earth, 2022, vol. 58, no. 4, pp. 445-458. DOI: 10.1134/s1069351322040061

Kuzmin Yu.O., Zhukov V.S., Sovremennaja geodinamika i variacii fizicheskih svojstv gornyh porod (Recent geodynamics and variations of physical properties of rocks), Moscow, Moscow State Mining University Press, 2004, 262 p. [In Russian].

Martyushev D.A., Lekomtsev A.V., Kotousov A.G., Determination of the openness and compressibility of natu-ral cracks of the carbonate deposit of the Logovsky deposit, Vestnik Permskogo nacional'nogo issle-dovatel'skogo politehnicheskogo universiteta. Geologija. Neftegazovoe i gornoe delo (Bulletin of Perm National Research Polytechnic University. Geology. Oil and gas and mining), 2015, vol. 14, no. 16, pp. 61-69. [In Russian]. DOI: 10.15593/2224-9923/2015.16.7

Matvienko Y.G., Osnovy fiziki i mehaniki razrushenija (Fundamentals of physics and mechanics of destruc-tion), Moscow, Fizmatlit, 2022, 144 p. [In Russian].

Mavko G., Mukerji T., Dvorkin J., The Rock Physics Handbook, Second Edition, New York, Cambridge Univer-sity Press, 2009, 525 р.

Nicolas A., Osnovy deformacii gornyh porod (Fundamentals of rock deformation), Moscow, Mir, 1992, 167 p. [In Russian].

Nygard R., Gutierrez M., Bratli R.K., Høeg K., Brittle–ductile transition, shear failure and leakage in shales and mudrocks, Marine and Petroleum Geology, 2006, vol. 23, pp. 201-212.

Panin V.E., Grinyaev Yu.V., Psakhie S.G., Physical mesomechanics: achievements over two decades of devel-opment, problems and prospects, Fizicheskaja mezomehanika. Spec. vypusk. Ch.1 (Physical mesome-chanics. Special issue. Part 1), 2004, vol. 7, pp. 25-40. [In Russian].

Panteleev I.A., Kovalenko Yu.F., Sidorin Yu.V., Zaitsev A.V., Karev V.I., Ustinov K.B., Shevtsov N.I., Evolution of damage in complex non-component compression of sandstone according to acoustic emission data, Fizicheskaja mezomehanika (Physical mesomechanics), 2019, vol. 22, no. 4, pp. 56-63. [In Russian].

Panteleev I.A., Plekhov O.A., Naimark O.B., A model of a geo-environment with defects: collective effects of discontinuities in the formation of potential earthquake foci, Geodinamika i tektonofizika (Geodynamics and tectonophysics), 2013, vol. 4, no. 1, pp. 37-51. [In Russian]. DOI: 10.5800/GT-2013-4-1-0090

Pestrikov V.M., Morozov E.M., Mehanika razrushenija tverdyh tel. Kurs lekcij (Mechanics of destruction of sol-ids. A course of lectures), St. Petersburg, Profession, 2002, 300 p. [In Russian].

Pimenov Y.G., Abrosimov A.A., Kameneva E.E., Study of dilatancy as one of the effects of rock deformation, Karotazhnik (Logger), 2015, no. 7(253), pp. 46-55. [In Russian].

Shapiro S.A., Khizhniak G.P., Plotnikov V.V., Niemann R., Ilyushin P.Yu., Galkin S.V., Permeability dependency on and compliant porosities: a model and some experimental examples, Journal of Geophysics and En-gineering, 2015a, vol. 12, iss. 3, pp. 376-385. DOI: 10.1088/1742-2132/12/3/376

Shapiro S.A., Khizhniak G.P., Plotnikov V.V., Niemann R., Ilyushin P.Yu., Galkin S.V., Stiff- and compliant-porosity based model of permeability – Theory and experiments: Conference Proceedings, in 77th EAGE Conference and Exhibition, 1–4 June 2015, Madrid, Spain, European Association of Geoscientists & En-gineers, 2015b, pp. 2812-2816. DOI: 0.3997/2214-4609.201412949

Sheng G., Javadpour F., Su Y., Effect of microscale compressibility on apparent porosity and permeability in shale gas reservoirs, International Journal Heat and Mass Transfer, 2018, vol. 120, pp. 56-65. DOI: 10.1016/j.ijheatmasstransfer.2017.12.014

Shkuratnik V.L., Nikolenko P.V., Koshelev A.E., Stress dependence of elastic P-waves velocity and amplitude in coal specimens under varied loading conditions, Journal of Mining Science, 2016, vol. 52, no. 5, pp. 873-877. DOI: 10.1134/S1062739116041322

Smirnov V.B., Ponomarev A.V., Fizika perehodnyh rezhimov sejsmichnosti (Physics of transient modes of seis-micity), Moscow, Russian Academy of Sciences, 2020, 412 p. [In Russian].

Sobolev G.A., Avalanche unstable fracturing formation model, Izvestiya, Physics of the Solid Earth, 2019, vol. 55, no. 1, pp. 138-151. DOI: 10.1134/S10693513190010117

Stavrogin A.N., Protosenya A.G., Mekhanika deformirovaniya i razrusheniya gornykh porod (Mechanics of de-formation and fracture of rocks), Moscow, Nedra, 1992, 224 p. [In Russian].

Stavrogin A.N., Tarasov B.G., Jeksperimental'naja fizika i mehanika gornyh porod (Experimental physics and mechanics of rocks), St. Petersburg, Nauka, 2001, 343 p. [In Russian].

Stefanov J.P., Numerical Modelling of Deformation and Failure of Sandstone Specimens, Journal of Mining Science, 2008, vol. 44, no. 1, pp. 64-72.

Stefanov J.P., Reverdatto V.V., Polyanskii O.P., Numerical study of the influence of medium properties on crack growth under the influence of internal pressure, in Tezisy dokladov IX mezhdunarodnoj shkoly-seminara “Fizicheskie osnovy prognozirovanija razrushenija gornyh porod”, g. Irkutsk, 2–6 sentjabrja 2013 g (Abstracts of the IX International School-seminar “Physical foundations of rock destruction forecasting”, Irkutsk, September 2-6, 2013), Irkutsk, Institute of the Earth's Crust of the Siberian Branch of the Russian Academy of Sciences, 2013, 115 p. [In Russian].

Sviridov V.A., Mayr S.I., Shapiro S.A., Elastic properties of two VTI shale samples as a function of uniaxial stress: Experimental results and application of the porosity-deformation approach, Geophysics, 2017, vol. 82, pp. 201-210.

Tiab D., Donaldson E.C., Petrophysics: theory and practice of measuring reservoir rock and fluid transport properties, Oxford, Gulf Professional Publishing, Elsevier, 2004, 918 p.

Tikhotsky S.A., Fokin I.V., Bayuk I.O., Beloborodov D.E., Berezina I.A., Gafurova D.R., Dubinya N.V., Krasno-va M.A., Korost D.V., Makarova A.A., Patonin A.V., Ponomarev A.V., Khamidullin R.A., Tselmo-vich V.A., Complex laboratory core analysis at CPGR IPE RAS, Nauka i tehnologicheskie razrabotki (Science and technological developments), 2017, vol. 96, no. 2, pp. 17-32. [In Russian]. DOI: 10.21455/std2017.2-2.

Turank K., Furmentro D., Denny A., Wave propagation and interface in rocks, in Mehanika gornyh porod primenitel'no k problemam razvedki i dobychi nefti (Rock mechanics in relation to the problems of oil exploration and production), Moscow, Mir, 1994, pp. 176-184. [In Russian].

Veselovskiy R.V., Dubinya N.V., Ponomarev A.V., Fokin I.V., Patonin A.V., Pasenko A.M., Fetisova A.M., Mat-veev M.A., Afinogenova N.A., Rud’ko D.V., Chistyakova A.V., Shared research facilities “Petrophysics, geomechanics and paleomagnetism” of the Schmidt Institute of Physics of the Earth RAS, Geodinamika i tektonofizika (Geodynamics and tectonophysics), 2022, vol. 13, no. 2, 12 p. [In Russian]. DOI: 10.5800/GT-2022-13-2-0579

Voznesenskii A.S., Tavostin M.N., Demchishin Yu.V., Effect of change in time of acoustic emission attenuation in rock salt when subjected to the maximum compaction, Journal of Mining Science, 2002, vol. 38, no. 1, pp. 25-30. DOI: 10.1023/A:1020284500706

Voznesensky A.S., Kutkin Y.O., Krasilov M.N., Interrelation of the acoustic Q-factor and strength in limestones, Journal of Mining Science, 2015, vol. 51, no. 1, pp. 23-30.

Voznesensky A.S., Kutkin Y.O., Krasilov M.N., The relationship of acoustic Q-factor and strength of rocks of various types, Uchenye zapiski fizicheskogo fakul'teta Moskovskogo universiteta (Scientific notes of the Faculty of Physics of Moscow University), 2017, no. 5, 3 p. [In Russian].

Zhabko A.V., The ultimate stress state of rocks, Izvestija vysshih uchebnyh zavedenij. Gornyj zhurna (News of higher educational institutions. Mining Magazine), 2015, no. 5, pp. 50-55. [In Russian].

Zhabko A.V., Laws of plastic deformation and destruction of solids, Izvestija Ural'skogo gosudarstvennogo gornogo universiteta (Proceedings of the Ural State Mining University), 2017a, no. 2 (46), pp. 82-87. [In Russian].

Zhabko A.V., The strength of the continuum (solids), Izvestija vysshih uchebnyh zavedenij. Gornyj zhurna (News of higher educational institutions. Mining Magazine), 2017b, no. 4, pp. 47-55. [In Russian].

Zhabko A.V., Theoretical and experimental aspects of plastic deformation and destruction of rocks, Izvestija Ural'skogo gosudarstvennogo gornogo universiteta (Proceedings of the Ural State Mining University), 2018, no. 1(49), pp. 68-79. [In Russian]. DOI: 10.21440/2307-2091-2018-1-68-79

Zhukov V.S., Assessment of changes in the physical properties of reservoirs caused by the development of oil and gas fields, Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal) (Mining Information and Analytical Bulletin (Scientific and technical journal)), 2010, no. 6, pp. 341-349. [In Russian].

Zhukov V.S., Estimation of reservoir fracturing by elastic wave propagation velocity, Nauchno-tehnicheskij sbornik “Vesti gazovoj nauki” (Scientific and technical collection “News of gas science”), 2012, no. 1(9), pp. 148-152. [In Russian].

Zhukov V.S., Kuzmin Yu.O., Physical modeling of modern geodynamic processes, Gornyj informacionno-analiticheskij bjulleten' (Mining information and analytical bulletin), 2003, no. 5, pp. 71-77. [In Russian].

Zhukov V.S., Kuzmin Y.O., The influence of fracturing of the rocks and model materials on P-wave propagation velocity: Experimental studies, Izvestiya, Physics of the Solid Earth, 2020, vol. 56, no. 4, pp. 470-480. DOI: 10.1134/S1069351320040102

Zhukov V.S., Kuzmin Y.O., Experimental evaluation of compressibility coefficients of fractures and intergranu-lar pores of oil and gas reservoirs, Journal of Mining Institute, 2021, vol. 251, pp. 658-666. DOI: 10.31897/pmi.2021.5.5

Zhukov V.S., Kuzmin Yu.O., Comparison of approaches to estimating the compressibility of pore space, Jour-nal of Mining Institute, 2022, vol. 258, pp. 1008-1017. DOI: 10.31897/PMI.2022.97

Zhukov V.S., Kuzmin Yu.O., Tikhotsky S.A., Egorov N.A., Fokin I.V., Changes in the Fracture and Intergranular Porosity in Rock Fracture Preparation, Seismic Instruments, 2022, vol. 58, no. 4, pp. 379-388. DOI: 10.3103/S0747923922040090

Zhukov V.S., Churikov Yu.M., Motorygin V.V., Changes in the structure of the pore space of the reservoirs of the Daginsky horizon when modeling reservoir conditions, Nauchno-tehnicheskij sbornik “Vesti gazovoj nauki” (Scientific and technical collection “News of gas science”), 2017, no. 3(31), pp. 238-246. [In Russian].

Zhukov V.S., Semenov E.O., Kuzmin Y.O., Dynamics of physical properties of reservoirs in the development of oil and gas fields, Nauchno-tehnicheskij sbornik “Vesti gazovoj nauki” (Scientific and technical collec-tion “News of gas science”), 2018, no. 5(37), pp. 82-99. [In Russian].

Ziganchin E., Nugmanova E., Kolchin A., The Use of Modelling Acoustic Properties to Study the Porosity of Carbonate Rocks on Core Samples, in Proceedings Kazan Golovkinsky Stratigraphic Meeting Sedimen-tary. “Earth Systems: Stratigraphy, Geochronology, Petroleum Resources”. Kazan, Russian Federation,

24-28 September 2019, Bologna, Italy, Filodiritto Publisher, 2019. pp. 283-287. DOI: 10.26352/D924F5047

Zoback M.D., Reservoir Geomechanics, New York, Cambridge University Press, 2007, 505 p.

Zuev L.B., Khon Yu.A., Plastic flow as a process of formation of space-time structures. Part I. Qualitative and quantitative patterns, Fizicheskaja mezomehanika (Physical mesomechanics), 2021, vol. 24, no. 6, pp. 5-14. [In Russian]. DOI: 10.24412/1683-805X-2021-6-5-14