Geophysical research: article

NANOCRACKS AT DESTRUCTION OF NEPHELINE
V.I. Vettegren1,2
A.V. Ponomarev1
R.I. Mamalimov1,2
I.P. Shcherbakov2
1 Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Moscow, Russia 2 Ioffe Physical Technical Institute of the Russian Academy of Sciences, Saint-Petersburg, Russia
Journal: Geophysical research
Tome: 22
Number: 4
Year: 2021
Pages: 61-72
UDK: 539.4
DOI: 10.21455/gr2021.4-4
Full text
Keywords: fractoluminescence, primary cracks, nepheline
Аnnotation: The fracture process of crystals begins from the formation of the smallest – “primary” cracks. All larger cracks are formed when these “primary” cracks unite. To register “primary” cracks that appear on the surface of a nepheline crystal at destruction by diamond microcrystals, the fractoluminescence method is used. Fractoluminescence spectrum consists of tree bands: 1.4, 1.68 and 1.98 eV. The 1.98 eV band corresponds to excited free radicals ≡Si-O●, 1.68 eV corresponds to excited Fe 3+● ions, and 1.4 eV occurs when empty traps are filled with electrons from the conduction band. These radicals, ions and traps appear at fracture of nepheline lattice cells and are located on the surface of the “primary” cracks. The time dependences of the fractoluminescence signals consist of separate signals. The duration of each signal was ≈86 ns. The interval between the signals varies from 0.1 to 1 μs. The nepheline crystal has hexagonal syngonia and six systems of dislocation slip planes. At the intersection of these planes, six barriers are formed that prevent the movement of dislocations. The breaking of each barrier causes the appearance of a “primary” crack and the formation of a maximum in the fractoluminescence signal. When six barriers are broken, clusters are formed from the same number of “primary” cracks. Therefore, fractoluminescence signals contain six maxima. At first, the largest crack appeares. Its dimensions range from ≈9 to ≈17 nm. The growth time of such crack is ≈16 ns. The remaining, smaller cracks have sizes 1.7 to 3.0 times smaller. The size distribution of cracks follows a power law with an exponent equal to 6.
Bibliography: Amitrano D., Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value, J. Geophys. Res.: Solid Earth, 2003, vol. 108, iss. B1, pp. 19-1-19-15. doi: 10.1029/2001JB000680.2003

Andersen M.T., Jain M., Tidemand-Lichtenberg P., Red-IR stimulated luminescence in K-feldspar: Single or multiple trap origin?, J. Appl. Phys., 2012, vol. 112, iss. 4. http://dx.doi.org/10.1063/1.4745018

Balassone G., Kahlenberg V., Altomare A., Mormone A., Rizzi R., Saviano M., Mondillo N., Nephelines from the Somma-Vesuvius volcanic complex (Southern Italy): crystal-chemical, structural and genetic investigations, Miner. Petrol., 2014, vol. 108, pp. 71-90. DOI: 10.1007/s00710-013-0290-6

Baril M.R., Huntley D.J., Optical excitation spectra of trapped electrons in irradiated feldspars, J. Phys.: Condens. Matter., 2003, vol. 15, no. 46, pp. 8029-8048.

Cottrell A.H., Theory of Crystal Dislocations, NY: Gordon and Breach, 1964, 91 p.

Fedorov V.A., Tyalin Yu.I., Tyalina V.A., Dislokatsionnye mekhanizmy razrusheniya dvoinikuyushchikhsya materialov (Dislocation mechanisms of twinning materials destruction), Moscow: Mashinostroenie-1, 2004, 336 p. [In Russian].

Götze J., Application of Сathodoluminescence, Microscopy and Spectroscopy in Geosciences, Microsc. Microanal., 2012, vol. 18, no. 6, pp. 1270-1284.

Gutenberg B., Richter C., Seismicity of the Earth and Associated Phenomena, 2nd ed., NJ: Princeton Univ. Press., 1954, 295 p.

Hull D., Bacon D.J., Introduction to Dislocations Fifth Edition, Elsevier Ltd, 2011, 257 p.

Kawaguchi Y., Fractoluminescence spectra in crystalline quartz, Jpn. J. Appl. Phys., 1998, vol. 37, pp. 1892-1896.

Lockner D.A., Byerlee J.D., Kuksenko V., Ponomarev V., Sidorin A., Observations of Quasi-static Fault Growth from Acoustic Emissions, International geophysics, 1992, vol. 51, pp. 3-31.

Manthei G., Eisenblätter J., Acoustic emission in study of rock stability, Acoustic emission testing, 2008, pp. 239-310.

Orlov A.N., Vvedenie v teoriyu defektov v kristallakh (Introduction to the theory of defects in crystals), Moscow: Vysshaya shkola, 1983, 144 p. [In Russian].

Rastsvetaeva R.K., Aksenov S.M., Chukanov N.V., Disordering of Al and Si in nepheline from Grauliai (Germany), Doklady Chemistry, 2010, vol. 435, Part 2, pp. 339-342. DOI: 10.1134/S0012500810120074

Rizzi R., Saviano M., Mondillo N., Nephelines from the Somma-Vesuvius volcanic complex (Southern Italy): crystal-chemical, structural and genetic investigations, Miner. Petrol., 2014, vol. 108, pp. 71-90. DOI: 10.1007/s00710-013-0290-6.

Samsonova N.S., Mineraly gruppy nefelina (Minerals of the nepheline group), Moscow: Nauka, 1973, 140 p. [In Russian].

Scholz C.H., The mechanics of earthquakes and faulting, Cambridge: Cambridge Univ. Press., 2019, 493 p.

Shaocheng J., Mainprice D., Natural deformation fabrics of plagioclase: implications for slip systems and seismic anisotropy, Tectonophysics, 1988, vol. 147, pp. 145-163.

Shavva M.A., Grubiy S.V., Cutting Forces Calculation at Diamond Grinding of Brittle Materials, Appl. Mechanics and Materials, 2015, vol. 770, pp. 163-168.

Shmidt E., Boas W., Kristallplastizität: Mit Besonderer Berücksichtigung der Metalle, Berlin: Springer, 1935, 316 p.

Sobolev G.A., Ponomarev A.V., Fizika zemletryasenii i predvestniki (Physics of earthquakes and precursors), Moscow: Nauka, 2003, 270 p. [In Russian].

Stevens Kalceff M.A., Phillips M.R., Cathodoluminescence microcharacterization of the defect structure of quartz, Phys. Rev., 1995, vol. 52, no. 5, pp. 3122-3134.

Shuldiner A.V., Zakrevskii V.A., On the mechanism of deformation-induced destruction of colour centres, Radiation Protection Dosimetry, 1996, vol. 65, no. 1–4, pp. 113-116.

Tait K.T., Sokolova E., Hawthorne F.C., Khomyakov A.P., The crystal chemistry of nepheline, Canad. Mineral., 2003, vol. 41, pp. 61-70.

Trépied L., Doukhan J.C., Transmission electron microscopy study of quartz single crystals deformed at room temperature and atmospheric pressure by indentations, J. Physique Lettres. Edpsciences, 1982, vol. 43, no. 3, pp. 77-81.

Turro N.J., Ramamwrite V., Scaiano J.C., Modern Molecular Photochemistry, Columbia University, NY: University Sci. Press, 2010, 1085 p.

Vettegren V.I., Kadomtsev A.G., Mamalimov R.I., Shcherbakov I.P., Fracto- and photoluminescence at fracture of quartz, Phys. Solid State, 2021а, vol. 63, no. 8, pp. 1120-1124.

Vettegren V.I., Ponomarev A.V., Kulik V.B., Mamalimov R.I., Shcherbakov I.P., Destruction of quartz diorite at friction, Geophysical Research, 2020b, vol. 21, no. 4, pp. 35-50. https://doi.org/10.21455/gr2020.4-3 UDC 539.4

Vettegren V.I., Ponomarev A.V., Kulik V.B., Mamalimov R.I., Shcherbakov I.P., Nanocracks of oligoclase fracture, Izvestiya, Physics of the Solid Earth, 2021b, vol. 6. (In print).

Vettegren V.I., Ponomarev A.V., Mamalimov R.I., Shcherbakov I.P., Nanocracks upon Fracture of Quartz, Izvestiya. Phys. Solid Earth, 2020a, vol. 56, no. 6, pp. 827-832.

Vladimirov V.I., Fizicheskaya priroda razrusheniya metallov (Physical nature fracture of metals), Moscow: Metallurgiya, 1984, 280 p. [In Russian].

Wiemer S., Wyss M., Mapping spatial variability of the frequency-magnitude distribution of earthquakes, Adv. Geophys., 2002, vol. 45, pp. 259-302.

Yakovenchuk V.N., Ivanyuk G.Yu., Konopleva N.G., Korchak Yu.A., Pakhomovsky Ya.A., Nepheline of the

Khibiny alkaline massif (Kola Peninsula), Zapiski Rossiiskogo mineralogicheskogo obshchestva (Proceedings of Russian Mineralogical Society), 2010, vol. 139, no. 2, pp. 80-91. [In Russian].

Zhou Y., He C., Microstructures and deformation mechanisms of experimentally deformed gabbro, Earthquake Science, 2015, vol. 28, no. 2, pp. 119-127. DOI: 10.1007/s11589-015-0115-2

Zhurkov S.N., Kuksenko V.S., Petrov V.A., Physical principles of prediction of mechanical disintegration, Soviet Physics Doklady, 1981, vol. 26, pp. 755-757.